High-energy eigenfunctions of the Laplacian on the torus and the sphere with nodal sets of complicated topology

Autor: F. Torres de Lizaur, Daniel Peralta-Salas, Alberto Enciso
Přispěvatelé: Universidad de Sevilla. Departamento de Análisis Matemático, Universidad de Sevilla. FQM104: Analisis Matematico
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nonlinear Partial Differential Equations for Future Applications : Sendai, Japan, July 10–28 and October 2–6, 2017
Springer Proceedings in Mathematics & Statistics
Nonlinear Partial Differential Equations for Future Applications ISBN: 9789813348219
Digital.CSIC. Repositorio Institucional del CSIC
instname
Popis: Let $\Sigma$ be an oriented compact hypersurface in the round sphere $\mathbb{S}^n$ or in the flat torus $\mathbb{T}^n$, $n\geq 3$. In the case of the torus, $\Sigma$ is further assumed to be contained in a contractible subset of $\mathbb{T}^n$. We show that for any sufficiently large enough odd integer $N$ there exists an eigenfunctions $\psi$ of the Laplacian on $\mathbb{S}^n$ or $\mathbb{T}^n$ satisfying $\Delta \psi=-\lambda \psi$ (with $\lambda=N(N+n-1)$ or $N^2$ on $\mathbb{S}^n$ or $\mathbb{T}^n$, respectively), and with a connected component of the nodal set of $\psi$ given by~$\Sigma$, up to an ambient diffeomorphism.
Comment: 14 pages. arXiv admin note: text overlap with arXiv:1712.10310, arXiv:1505.01605
Databáze: OpenAIRE