Biological processes dominate phosphorus dynamics under low phosphorus availability in organic horizons of temperate forest soils

Autor: Éva Mészáros, Chiara Pistocchi, Federica Tamburini, Emmanuel Frossard, Else K. Bünemann
Přispěvatelé: Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institute of Agricultural Sciences, Ecole Polytechnique Fédérale de Zurich, Research Institute of Organic Agriculture - Forschungsinstitut für biologischen Landbau (FiBL), Swiss National Science Foundation [SNF project 200021E-149130].
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Soil Biology and Biochemistry
Soil Biology and Biochemistry, Elsevier, 2018, 126, pp.64-75. ⟨10.1016/j.soilbio.2018.08.013⟩
Soil Biology and Biochemistry, 126
ISSN: 0038-0717
Popis: International audience; Understanding the mechanisms underlying phosphorus (P) availability is important to predict forest productivity in a changing environment. We quantified P fluxes and traced P from plant litter into inorganic and organic soil P pools in organic horizons from two contrasting temperate forest soils with low and high inorganic P availability, respectively. We incubated the two organic horizons with and without litter after labelling the soil solution with P-33 and performed sequential extractions at several time points in order to trace P dynamics in labile (water extractable, available and microbial P) and non-labile (non-living organic P, P bound to iron and aluminium and P bound to calcium) pools. Under low P availability, P fluxes were dominated by gross P mineralization, and microbial P immobilization accounted for up to 95% of gross P mineralization. Additionally, labile P in plant litter was rapidly incorporated into microbial P and only a small fraction ended up in the non-labile inorganic P pools. In contrast, P fluxes under high P availability were dominated by abiotic processes, particularly by fast (within 10 days) sorption/desorption reactions between the available P and the P bound to aluminium. These findings support the hypothesis that under low P availability biological processes control P fluxes. The observed tight cycling of P, with little efflux due to net P mineralization, suggests that the mineralization of organic P is driven by microbial P demand, and that the microbial community could compete with plants for available P.
Databáze: OpenAIRE