A framework for clustering uncertain data

Autor: Alexander Koos, Erich Schubert, Klaus Arthur Schmid, Tobias Emrich, Arthur Zimek, Andreas Züfle
Rok vydání: 2015
Předmět:
Zdroj: Scopus-Elsevier
ISSN: 2150-8097
DOI: 10.14778/2824032.2824115
Popis: The challenges associated with handling uncertain data, in particular with querying and mining, are finding increasing attention in the research community. Here we focus on clustering uncertain data and describe a general framework for this purpose that also allows to visualize and understand the impact of uncertainty---using different uncertainty models---on the data mining results. Our framework constitutes release 0.7 of ELKI (http://elki.dbs.ifi.lmu.de/) and thus comes along with a plethora of implementations of algorithms, distance measures, indexing techniques, evaluation measures and visualization components.
Databáze: OpenAIRE