FramePests: A Comprehensive Framework for Crop Pests Modeling and Forecasting
Autor: | Jacques Avelino, Natacha Motisi, Emmanuel Lasso, Juan Carlos Corrales |
---|---|
Přispěvatelé: | Universidad del Cauca [Popayán], Plant Health Institute of Montpellier (UMR PHIM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Centro Agronómico Tropical de Investigación y Enseñanza - Tropical Agricultural Research and Higher Education Center (CATIE), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Doctoral Program of Telematics Engineering and the Telematics Engineering Group (GIT) of the University of Cauca, Programa Centroamericano de Gestión Integral de la Roya del Café (PROCAGICA)’’ through the EU under Grant DCI-ALA/2015/365-17, Tropical Agricultural Research and Higher Education Center (CATIE)., InnovAccion Cauca Project of the Colombian Science, Technology and Innovation Fund (SGR-CTI), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Computer science
02 engineering and technology computer.software_genre Data modeling Surveillance des déprédateurs Predictive models knowledge-based model 0202 electrical engineering electronic engineering information engineering General Materials Science Analytical models computer.programming_language 2. Zero hunger Food security Ravageur des plantes Crop pest forecasting data-based model General Engineering Data models Agriculture technique de prévision Système basé sur la connaissance Systematic review Knowledge base 020201 artificial intelligence & image processing Knowledge based systems Electrical engineering. Electronics. Nuclear engineering Rust (programming language) General Computer Science 020209 energy Machine learning Knowledge-based systems smart farming Crop pest Systematics business.industry Modèle de simulation H10 - Ravageurs des plantes TK1-9971 [SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy Modélisation Artificial intelligence State (computer science) Gradient boosting business computer Forecasting |
Zdroj: | IEEE Access IEEE Access, 2021, 9, pp.115579-115598. ⟨10.1109/ACCESS.2021.3104537⟩ IEEE Access, Vol 9, Pp 115579-115598 (2021) IEEE Access, IEEE, 2021, 9, pp.115579-115598. ⟨10.1109/ACCESS.2021.3104537⟩ |
ISSN: | 2169-3536 |
Popis: | Crop pests are among the greatest threats to food security, generating broad economic, social, and environmental impacts. These pests interact with their hosts and the environment through complex pathways, and it is increasingly common to find professionals from different areas gathering into projects that attempt to deal with this complexity. We propose a framework called FramePests guiding steps and activities for crop pest modeling and forecasting. From theoretical references about carrying out mappings and systematic reviews of the literature, the framework proposes a series of steps leading to a state of science as a knowledge base for modeling tasks. Then, two modeling solutions, based on data and knowledge are used. Finally, the model outputs and performances are compared. The application of the proposed framework was demonstrated for coffee leaf rust modeling, for which we obtained a data-based model built using a gradient boosting algorithm (XGBoost) with a mean absolute error of 7.19% and a knowledge-based model represented by a hierarchical multi-criteria decision structure with an accuracy of 56.03%. A complementary study for our case study allowed us to explore how elements of a data-based model can improve a knowledge-based model, improving its accuracy by 7.07%. and showed that knowledge-based modeling can be an alternative to data-based modeling when the available dataset has approximately 60 instances. Data-based models tend to have better performance, but their replicability is conditioned by the diversity in the dataset used. Knowledge-based models may be simpler but allow expert supervision, and these models are not usually tied to specific sites. |
Databáze: | OpenAIRE |
Externí odkaz: |