Encoding the electrodynamics in spatiotemporal boundaries
Autor: | Juan-Carlos Giraldo, Nestor Pena, Michel Ney |
---|---|
Přispěvatelé: | Department of Electrical and Electronic Engineering, Universidad de los Andes [Bogota] (UNIANDES), Lab-STICC_TB_MOM_PIM, Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS), Universidad de los Andes [Bogota] |
Rok vydání: | 2020 |
Předmět: |
Mean value theorem
Field (physics) Spacetime Computer science Finite-difference time-domain method Finite difference General Physics and Astronomy Classical field theory Minkowski spacetime Wave equation 01 natural sciences 010305 fluids & plasmas Multiscale FDTD problems [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism symbols.namesake Hardware and Architecture 0103 physical sciences Minkowski space Holographic principle Taylor series symbols Applied mathematics Time-symmetric electrodynamics 010306 general physics FDTD performance improvement |
Zdroj: | Computer Physics Communications Computer Physics Communications, Elsevier, 2020, 247, pp.106858. ⟨10.1016/j.cpc.2019.07.021⟩ |
ISSN: | 0010-4655 |
DOI: | 10.1016/j.cpc.2019.07.021 |
Popis: | Maxwell’s equations represented by differential operators describe the local dependence between both electric and magnetic fields in every location of space and time. This description responds to the field concept proposed by Michael Faraday and formalized by James Clerk Maxwell. The discretized version in the form of the finite-difference time-domain (FDTD) technique relies on a proposal of local computation of the respective differential operators making use of the central difference approximation of the second derivative of functions through the Taylor series expansion . This article introduces a novel time-symmetric “non-local” technique from the mathematical formalism of electromagnetic potentials in the wave equation and its physical interpretation in the Minkowski spacetime . In the proposed case study, the “non-local” proposal is 1643 faster than FDTD, i.e., more than three orders of magnitude, and it uses a time-step that is 4096 times greater than the Courant–Friedrichs–Lewy limit without encountering stability problems. New electromagnetic potentials are calculated from the previous and distant ones located at vertices of spatiotemporal regions called causal diamonds that tessellates spacetime without the need for computations inside them. We show that the performance gain is proportional to the size of the spacetime tessellations because the ratio “domain to boundary” increases as the domain extension does. Consequently, our novel “non-local” approach provides a reduction in computational complexity and a more comprehensible explanation of their fundamental physical aspects, without contradicting the principles of the successful classical field theory. Program summary Program Title: SOME_models Program Files doi: http://dx.doi.org/10.17632/7sgh6grm7g.1 Licensing provisions: GPLv3 Programming language: C Nature of problem: The Courant–Friedrichs–Lewy (CFL) condition imposes a numerical bound to the size of the Yee cell in the FDTD approach. This restriction causes excessive oversampling, degrading the computation time of this technique. Solution method: We applied the parallelogram rule to solve the wave equation for the case of ( 1 + 1 ) time–space dimensions. With this rule, we proposed a novel algorithm that allows encoding potentials along the characteristic lines that tessellate the spacetime. The new technique produces higher performance gains than those achieved through traditional FDTD. |
Databáze: | OpenAIRE |
Externí odkaz: |