A generalization of parabolic Riesz and parabolic Bessel potentials

Autor: Ilham A. Aliev, Cagla Sekin
Rok vydání: 2020
Předmět:
Zdroj: Rocky Mountain J. Math. 50, no. 3 (2020), 815-824
ISSN: 0035-7596
DOI: 10.1216/rmj.2020.50.815
Popis: Classical parabolic Riesz and parabolic Bessel type potentials are interpreted as negative fractional powers of the differential operators (−△+∂∕∂t) and (I−△+∂∕∂t). Here, △ is the Laplacian and I is the identity operator. We introduce some generalizations of these potentials, namely, we define the family of operators Aβ,𝜃α=(𝜃I+(−△)β∕2+∂∕∂t)−α for 𝜃≥0 and α,β>0, and investigate its behavior in the framework of Lp(ℝn+1)-spaces.
Databáze: OpenAIRE