Simple matrix representations of the orthogonal polynomials for a rational spectral density on the unit circle
Autor: | Yukio Kasahara, Akihiko Inoue |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Seghier's formula Applied Mathematics Orthogonal polynomials on the unit circle 010102 general mathematics Spectral density 01 natural sciences 010104 statistics & probability Matrix (mathematics) Rational spectral density Unit circle Simple (abstract algebra) Orthogonal polynomials 0101 mathematics Verblunsky coefficients Analysis Mathematics |
Zdroj: | Journal of mathematical analysis and applications. 464(2):1366-1374 |
ISSN: | 0022-247X |
Popis: | In this note, by using a discrete analog of a projection formula introduced by A. Seghier in 1978, we calculate the orthogonal polynomials on the unit circle for a rational spectral density having no zeros there, and derive simple matrix representations of themselves, their squared norms, and the Verblunsky coefficients. (C) 2018 Elsevier Inc. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |