A characterization of alternating log time by ramified recurrence

Autor: Daniel Leivant, Jean-Yves Marion
Přispěvatelé: Department of Computer Science [Santa Barbara], University of California [Santa Barbara] (UC Santa Barbara), University of California (UC)-University of California (UC), Linear logic, proof networks and categorial grammars (CALLIGRAMME), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), University of California [Santa Barbara] (UCSB), University of California-University of California
Jazyk: angličtina
Rok vydání: 2000
Předmět:
Zdroj: Theoretical Computer Science
Theoretical Computer Science, 2000, 236 (1-2), pp.192-208. ⟨10.1016/S0304-3975(99)00209-1⟩
Theoretical Computer Science, Elsevier, 2000, 236 (1-2), pp.192-208. ⟨10.1016/S0304-3975(99)00209-1⟩
ISSN: 1879-2294
0304-3975
DOI: 10.1016/S0304-3975(99)00209-1⟩
Popis: We give a machine-independent characterization of the class of functions bitwise computable in alternating logarithmic time, with output of polynomial size. Recall that ALogTime is the same, for decision problems, as the U E ∗ -uniform variant of NC 1 Ruzzo, J. Comput. System Sci. 22 (1981) 365–383. Our characterization is in terms of a weak form of ramified tree recurrence with substitutions. No initial functions other than basic tree operations are used, and no bounding conditions on the recurrence.
Databáze: OpenAIRE