Genericity and contragredience in the local Langlands correspondence
Autor: | Tasho Kaletha |
---|---|
Rok vydání: | 2013 |
Předmět: |
Classical group
Algebra and Number Theory Mathematics - Number Theory generic $L$-packet Mathematics::Number Theory Representation (systemics) Whittaker data local Langlands correspondence Jacquet–Langlands correspondence Langlands dual group Algebra 22E50 Langlands program Local Langlands conjectures 11S37 FOS: Mathematics Number Theory (math.NT) Representation Theory (math.RT) contragredient classical group Mathematics::Representation Theory Mathematics - Representation Theory Mathematics |
Zdroj: | Algebra Number Theory 7, no. 10 (2013), 2447-2474 |
ISSN: | 1944-7833 1937-0652 |
DOI: | 10.2140/ant.2013.7.2447 |
Popis: | We prove the recent conjectures of Adams-Vogan and D. Prasad on the behavior of the local Langlands correspondence with respect to taking the contragredient of a representation. The proof holds for tempered representations of quasi-split real K-groups and quasi-split p-adic classical groups (in the sense of Arthur). We also prove a formula for the behavior of the local Langlands correspondence for these groups with respect to changes of the Whittaker data. Comment: Minor changes to the introduction and references to place the paper in the proper context. Corollary 4.10 added. An inaccuracy in the treatment of even orthogonal groups fixed |
Databáze: | OpenAIRE |
Externí odkaz: |