Fuel and Vehicle Technology Choices for Passenger Vehicles in Achieving Stringent CO2 Targets: Connections between Transportation and Other Energy Sectors
Autor: | Maria Grahn, Christian Azar, Timothy J. Wallington, Sherry A. Mueller, Mats Williander, James E. Anderson |
---|---|
Rok vydání: | 2009 |
Předmět: |
Energy-Generating Resources
Fossil Fuels Engineering Waste management Atmosphere business.industry Fossil fuel Transportation General Chemistry Carbon Dioxide Alternative fuels Automotive engineering Electrification Solar Energy Carbon capture and storage Environmental Chemistry Electricity business Automobiles Constraint (mathematics) Gasoline Energy (signal processing) Solar power Hydrogen |
Zdroj: | Environmental Science & Technology. 43:3365-3371 |
ISSN: | 1520-5851 0013-936X |
DOI: | 10.1021/es802651r |
Popis: | The regionalized Global Energy Transition (GET-R 6.0) model has been modified to include a detailed description of light-duty vehicle options and used to investigate the potential impact of carbon capture and storage (CCS) and concentrating solar power (CSP) on cost-effective fuel/vehicle technologies in a carbon-constrained world. Total CO2 emissions were constrained to achieve stabilization at 400-550 ppm, by 2100, at lowest total system cost. The dominant fuel/vehicle technologies varied significantly depending on CO2 constraint, future cost of vehicle technologies, and availability of CCS and CSP. For many cases, no one technology dominated on a global scale. CCS provides relatively inexpensive low-CO2 electricity and heat which prolongs the use of traditional ICEVs. CSP displaces fossil fuel derived electricity, prolongs the use of traditional ICEVs, and promotes electrification of passenger vehicles. In all cases considered, CCS and CSP availability had a major impact on the lowest cost fuel/vehicle technologies, and alternative fuels are needed in response to expected dwindling oil and natural gas supply potential by the end of the century. |
Databáze: | OpenAIRE |
Externí odkaz: |