Self-Similarity Analysis of the Nonlinear Schrödinger Equation in the Madelung Form
Autor: | Imre Ferenc Barna, Laszlo Matyas, M. A. Pocsai |
---|---|
Rok vydání: | 2018 |
Předmět: |
01.03. Fizikai tudományok
Article Subject Self-similarity Physics QC1-999 Applied Mathematics Mathematical analysis General Physics and Astronomy 01 natural sciences 010305 fluids & plasmas Euler equations Term (time) symbols.namesake Nonlinear system Transformation (function) System of differential equations 0103 physical sciences symbols 010306 general physics Nonlinear Schrödinger equation Mathematics |
Zdroj: | Advances in Mathematical Physics, Vol 2018 (2018) |
ISSN: | 1687-9139 1687-9120 |
Popis: | In the present study a particular case of Gross-Pitaevskii or nonlinear Schrödinger equation is rewritten to a form similar to a hydrodynamic Euler equation using the Madelung transformation. The obtained system of differential equations is highly nonlinear. Regarding the solutions, a larger coefficient of the nonlinear term yields stronger deviation of the solution from the linear case. |
Databáze: | OpenAIRE |
Externí odkaz: |