Clustering stability for automated color image segmentation
Autor: | Rafael Namías, Mónica G. Larese, Ariel E. Bayá |
---|---|
Rok vydání: | 2017 |
Předmět: |
Clustering high-dimensional data
Fuzzy clustering Correlation clustering ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION 02 engineering and technology computer.software_genre CLUSTERING VALIDATION Artificial Intelligence CURE data clustering algorithm 0202 electrical engineering electronic engineering information engineering CLUSTERING STABILITY Cluster analysis Mathematics IMAGE SEGMENTATION business.industry Segmentation-based object categorization General Engineering 020207 software engineering Pattern recognition Spectral clustering Ciencias de la Computación Computer Science Applications Ciencias de la Computación e Información Canopy clustering algorithm 020201 artificial intelligence & image processing Artificial intelligence Data mining business computer CIENCIAS NATURALES Y EXACTAS |
Zdroj: | Expert Systems with Applications. 86:258-273 |
ISSN: | 0957-4174 |
DOI: | 10.1016/j.eswa.2017.05.064 |
Popis: | Clustering is a well-established technique for segmentation. However, clustering validation is rarely used for this purpose. In this work we adapt a clustering validation method, Clustering Stability (CS), to automatically segment images. CS is not limited by image dimensionality nor by the clustering algorithm. We show clustering and validation acting together as a data-driven process able to find the optimum number of partitions according to our proposed color-texture feature representation. We also describe how to adapt CS to detect the best settings required for feature extraction. The segmentation solutions found by our method are supported by a stability score named STI, which provides an objective quantifiable metric to obtain the final segmentation results. Furthermore, the STI allows to compare multiple alternative solutions and select the most appropriate according to the index meaning. We successfully test our procedure on texture and natural images, and 3D MRI data. Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
Databáze: | OpenAIRE |
Externí odkaz: |