A field scale model for the spread of fungal diseases in crops: the example of a powdery mildew epidemic over a large vineyard
Autor: | Arnaud Ducrot, Jean Baptiste Burie |
---|---|
Přispěvatelé: | Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2014 |
Předmět: |
Field (physics)
General Mathematics General Engineering Nonlinear differential equations Vineyard Fungal disease Convergence (routing) [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Applied mathematics Scale model ComputingMilieux_MISCELLANEOUS Powdery mildew Mathematics Multiple-scale analysis |
Zdroj: | Mathematical Methods in the Applied Sciences Mathematical Methods in the Applied Sciences, Wiley, 2015 |
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.3312 |
Popis: | The aim of this article is to derive an asymptotic two-scale model for the propagation of a fungal disease over a large vineyard. The original model is based on a singularly perturbed system of two linear reaction-diffusion equations coupled with a set of nonlinear ordinary differential equations in a highly heterogeneous medium. We prove the well-posedness of the asymptotic model and obtain a convergence result confirmed by numerical simulations. Copyright © 2014 John Wiley & Sons, Ltd. |
Databáze: | OpenAIRE |
Externí odkaz: |