Quantum Biometrics

Autor: Iannis, Kominis, Michail, Loulakis, E., Müstecaplıoğlu, Özgur
Rok vydání: 2022
Zdroj: Recent Advances in Biometrics
DOI: 10.5772/intechopen.103752
Popis: It was recently proposed to use the human visual system’s ability to perform efficient photon counting in order to devise a new biometric authentication methodology. The relevant “fingerprint” is represented by the optical losses light suffers along different paths from the cornea to the retina. The “fingerprint” is accessed by interrogating a subject on perceiving or not weak light flashes, containing few tens of photons, thus probing the subject’s visual system at the threshold of perception, at which regime optical losses play a significant role. The name “quantum biometrics” derives from the fact that the photon statistics of the illuminating light, as well as the quantum efficiency at the light detection level of rod cells, are central to the method. Here we elaborate further on this methodology, addressing several aspects like aging effects of the method’s “fingerprint,” as well as its inter-subject variability. We then review recent progress towards the experimental realization of the method. Finally, we summarize a recent proposal to use quantum light sources, in particular a single photon source, in order to enhance the performance of the authentication process. This further corroborates the “quantum” character of the methodology and alludes to the emerging field of quantum vision.
Databáze: OpenAIRE