Carbon sequestration potential of Mg carbonate and silicate biomineralization in the presence of cyanobacterium Synechococcus

Autor: Céline Lamérand, Liudmila S. Shirokova, Pascale Bénézeth, Jean-Luc Rols, Oleg S. Pokrovsky
Přispěvatelé: Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Chemical geology. 2022. Vol. 599. P. 120854 (1-13)
Chemical Geology
Chemical Geology, 2022, 599, pp.120854. ⟨10.1016/j.chemgeo.2022.120854⟩
ISSN: 0009-2541
DOI: 10.1016/j.chemgeo.2022.120854⟩
Popis: Bacterially-induced sequestration of atmospheric CO2 is at the forefront of geomicrobiological research due to high potential of this process in the mitigation of climate warming. Cyanobacteria have been known to form stromatolites since the Precambrian and could be used to enhance this process by sequestering carbon via the biomineralization of Mg and Ca carbonates. Currently, olivine (MgSiO4) is considered as one of the most efficient silicate minerals suitable for CO2 capture in the form of secondary Mg carbonates. However, the role of dissolved Si on the efficiency of biomineralization is not sufficiently well understood. The present study intended to reproduce in the laboratory the processes of biomineralization by Synechococcus sp. cyanobacteria extracted from modern stromatolites in a carbonate- and Mg-bearing medium containing various Si concentrations, in order to characterize the rates and stoichiometry of reactions as well as mineralogical nature of precipitates. The results demonstrated the dominant role of cyanobacterial metabolism in the precipitation of carbonate minerals by increasing the pH of the medium via photosynthesis and providing a template in the form of cell walls and their EPS for mineral nucleation. Transmission electron microscopy and other microscopic and spectroscopic observations and analyses identified magnesium carbonates and silicates, such as nesquehonite (MgCO3·3H2O) and/or hydromagnesite (Mg5(CO3)4(OH)2·4(H2O) together with amorphous analogue of sepiolite (Mg4Si6O15(OH)2·6H2O) as dominant precipitated minerals. Apparent inorganic C precipitation rates were not affected by the concentration of Mg and Si in the initial solution. However, the carbon sequestration potential was 20–40% higher in the presence of Si. Overall, the experimental approach developed in this study allows efficient reproduction of combined Mg hydroxy‑carbonate and hydrous silicate precipitation under cyanobacterial activity and helps to constrain optimal conditions of cyanobacteria-induced CO2 sequestration.
Databáze: OpenAIRE