Popis: |
In this study, soil response was carried out for the Greater Delhi region. A folded Proterozoic formation was identified as Delhi ridge, passes through its central part along SSW–NNE direction, and appears to be a main geomorphic feature for the study area. The Delhi ridge is an exposed quartzite rock of about 10–100 m wide and ~25 km long with gentler dipping both toward east and west. We have considered the exposed part as an outcrop side near the ridge axis and the dipping area as rigid base away from the ridge axis for ground motion study during the occurrence of the 25 November 2007 earthquake with magnitude ML 4.3 (Richter scale) that occurred at Delhi–Haryana State boundary. The degree of shaking was very strong and reported major cracks in the buildings near the epicenter area. We have studied the soil response parameters at the surface level, considering horizontally stratified soil layers above rigid base. The equivalent linear method was used for soil response analysis at 25 sites in Greater Delhi area. The peak amplification factors vary from 3.2 to 5.9 and peak resonance frequency varies from 1.2 to 5.3 Hz. The correlation among the peak amplification factor (A) and frequency (f) was empirically established as A = 0.36f + 3.60. Increasing peak amplification factor was found at sites with increasingly thicker alluvium deposit with lower frequency contains ground motion and vice versa. Seismic zoning map was also reconstructed for peak amplification factors and predominant periods for the study area for the mitigation purposes of earthquake damage. The average shear wave velocity up to 30 m soil depth is also obtained for site classification. The average velocity to 30 m [\( \overline{{V_{\text{s}} }} (30) \)] is a widely used parameter for classifying sites for predicting their potentiality to amplify seismic shaking. A lower value [\( \overline{{V_{\text{s}} }} (30) \)] thus yields a more conservative estimate of ground motion, which generally increases as \( \overline{{V_{\text{s}} }} (30) \)decreases. Present estimate of \( \overline{{V_{\text{s}} }} (30) \)varies from 315 to 419 m/s. In this study, we have identified two site classes C and D, as per National Earthquake Hazard Reduction Program. The city planner or engineers can directly use these data for site-specific assessment during retrofitting of the existing structure, demolition of the old buildings and design a new structure to avoid major destruction of the buildings due to future earthquake. |