Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates:a combined experimental and Computational Fluid Dynamics approach
Autor: | Rene J. B. Dijkstra, F. B. de Andrade, C. Boutsioukis, Marcus Vinícius Reis Só, L.W.M. van der Sluis, Prashant K. Sharma, Thais Cristina Pereira, W. J. van de Meer, Michel Versluis, Xenos Petridis |
---|---|
Přispěvatelé: | Endodontology, Personalized Healthcare Technology (PHT), Man, Biomaterials and Microbes (MBM), Physics of Fluids, MESA+ Institute, TechMed Centre |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
velocity
Irrigation Basic Research ‐ Technical sodium hypochlorite Root canal MODELS Computational fluid dynamics biofilm Lateral canal chemistry.chemical_compound ROOT isthmus medicine Therapeutic Irrigation General Dentistry Syringe Root Canal Irrigants DENTIN business.industry Syringes Biofilm Volumetric flow rate medicine.anatomical_structure chemistry TISSUE Biofilms Sodium hypochlorite Hydrodynamics Original Article INACTIVATION BACTERIAL ADHESION Dental Pulp Cavity business SDG 6 - Clean Water and Sanitation Root Canal Preparation lateral canal Biomedical engineering |
Zdroj: | Pereira, T C, Boutsioukis, C, Dijkstra, R J B, Petridis, X, Versluis, M, de Andrade, F B, van de Meer, W J, Sharma, P K, van der Sluis, L W M & So, M V R 2021, ' Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates : a combined experimental and Computational Fluid Dynamics approach ', International Endodontic Journal, vol. 54, no. 3, pp. 427-438 . https://doi.org/10.1111/iej.13420 International Endodontic Journal International Endodontic Journal, 54(3), 427-438. Wiley-Blackwell International Endodontic Journal, 54(3), 427-438. Wiley International endodontic journal, 54(3), 427-438. Wiley-Blackwell |
ISSN: | 0143-2885 |
DOI: | 10.1111/iej.13420 |
Popis: | © 2020 The Authors. International Endodontic Journal published by John Wiley & Sons Ltd on behalf of British Endodontic SocietyAim: (i) To quantify biofilm removal from a simulated isthmus and a lateral canal in an artificial root canal system during syringe irrigation with NaOCl at different concentrations and delivered at various flow rates (ii) to examine whether biofilm removal is further improved by a final high-flow-rate rinse with an inert irrigant following irrigation with NaOCl. (iii) to simulate the irrigant flow in these areas using a computer model (iv) to examine whether the irrigant velocity calculated by the computer model is correlated to biofilm removal. Methodology: Ninety-six artificial root canals with either a simulated isthmus or lateral canal were used. A dual-species in vitro biofilm was formed in these areas using a Constant Depth Film Fermenter. NaOCl at various concentrations (2, 5 and 10%) or adhesion buffer (control) was delivered for 30 s by a syringe and an open-ended needle at 0.033, 0.083, or 0.166 mL s−1 or passively deposited in the main root canal (phase 1). All specimens were subsequently rinsed for 30 s with adhesion buffer at 0.166 mL s−1 (phase 2). The biofilm was scanned by Optical Coherence Tomography to determine the percentage of the remaining biofilm. Results were analysed by two 3-way mixed-design ANOVAs (α = 0.05). A Computational Fluid Dynamics model was used to simulate the irrigant flow inside the artificial root canal system. Results: The flow rate during phase 1 and additional irrigation during phase 2 had a significant effect on the percentage of the remaining biofilm in the isthmus (P = 0.004 and P < 0.001). Additional irrigation during phase 2 also affected the remaining biofilm in the lateral canal significantly (P ≤ 0.007) but only when preceded by irrigation at medium or high flow rate during phase 1. The effect of NaOCl concentration was not significant (P > 0.05). Irrigant velocity in the isthmus and lateral canal increased with increasing flow rate and it was substantially correlated to biofilm removal from those areas. Conclusions: The irrigant flow rate affected biofilm removal in vitro more than NaOCl concentration. Irrigant velocity predicted by the computer model corresponded with the pattern of biofilm removal from the simulated isthmus and lateral canal. |
Databáze: | OpenAIRE |
Externí odkaz: |