An entropy-based uncertainty principle for a locally compact abelian group
Autor: | Tomasz Przebinda, Murad Özaydin |
---|---|
Rok vydání: | 2004 |
Předmět: |
Discrete mathematics
Abelian group Entropy 010102 general mathematics 020206 networking & telecommunications Elementary abelian group 02 engineering and technology Locally compact group 01 natural sciences Rank of an abelian group Free abelian group Uncertainty principle 0202 electrical engineering electronic engineering information engineering Abelian category Locally compact space 0101 mathematics Analysis Mathematics Arithmetic of abelian varieties |
Zdroj: | Journal of Functional Analysis. 215(1):241-252 |
ISSN: | 0022-1236 |
DOI: | 10.1016/j.jfa.2003.11.008 |
Popis: | We classify all functions on a locally compact, abelian group giving equality in an entropy inequality generalizing the Heisenberg Uncertainty Principle. In particular, for functions on a real line, we proof a conjecture of Hirschman published in 1957. |
Databáze: | OpenAIRE |
Externí odkaz: |