Incorporating progesterone receptor expression into the PREDICT breast prognostic model

Autor: Isabelle Grootes, Renske Keeman, Fiona M. Blows, Roger L. Milne, Graham G. Giles, Anthony J. Swerdlow, Peter A. Fasching, Mustapha Abubakar, Irene L. Andrulis, Hoda Anton-Culver, Matthias W. Beckmann, Carl Blomqvist, Stig E. Bojesen, Manjeet K. Bolla, Bernardo Bonanni, Ignacio Briceno, Barbara Burwinkel, Nicola J. Camp, Jose E. Castelao, Ji-Yeob Choi, Christine L. Clarke, Fergus J. Couch, Angela Cox, Simon S. Cross, Kamila Czene, Peter Devilee, Thilo Dörk, Alison M. Dunning, Miriam Dwek, Douglas F. Easton, Diana M. Eccles, Mikael Eriksson, Kristina Ernst, D. Gareth Evans, Jonine D. Figueroa, Visnja Fink, Giuseppe Floris, Stephen Fox, Marike Gabrielson, Manuela Gago-Dominguez, José A. García-Sáenz, Anna González-Neira, Lothar Haeberle, Christopher A. Haiman, Per Hall, Ute Hamann, Elaine F. Harkness, Mikael Hartman, Alexander Hein, Maartje J. Hooning, Ming-Feng Hou, Sacha J. Howell, Hidemi Ito, Anna Jakubowska, Wolfgang Janni, Esther M. John, Audrey Jung, Daehee Kang, Vessela N. Kristensen, Ava Kwong, Diether Lambrechts, Jingmei Li, Jan Lubiński, Mehdi Manoochehri, Sara Margolin, Keitaro Matsuo, Nur Aishah Mohd Taib, Anna Marie Mulligan, Heli Nevanlinna, William G. Newman, Kenneth Offit, Ana Osorio, Sue K. Park, Tjoung-Won Park-Simon, Alpa V. Patel, Nadege Presneau, Katri Pylkäs, Brigitte Rack, Paolo Radice, Gad Rennert, Atocha Romero, Emmanouil Saloustros, Elinor J. Sawyer, Andreas Schneeweiss, Fabienne Schochter, Minouk J. Schoemaker, Chen-Yang Shen, Rana Shibli, Peter Sinn, William J. Tapper, Essa Tawfiq, Soo Hwang Teo, Lauren R. Teras, Diana Torres, Celine M. Vachon, Carolien H.M. van Deurzen, Camilla Wendt, Justin A. Williams, Robert Winqvist, Mark Elwood, Marjanka K. Schmidt, Montserrat García-Closas, Paul D.P. Pharoah
Přispěvatelé: Medical Oncology, Pathology, Medicum, HUS Comprehensive Cancer Center, Department of Oncology, Clinicum, University of Helsinki, Helsinki University Hospital Area, Institute for Molecular Medicine Finland, HUS Gynecology and Obstetrics, Department of Obstetrics and Gynecology
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: 2022, ' Incorporating progesterone receptor expression into the PREDICT breast prognostic model ', European journal of cancer (Oxford, England : 1990), vol. 173, pp. 178-193 . https://doi.org/10.1016/j.ejca.2022.06.011
ABCTB Investigators & kConFab Investigators 2022, ' Incorporating progesterone receptor expression into the PREDICT breast prognostic model ', European Journal of Cancer, vol. 173, pp. 178-193 . https://doi.org/10.1016/j.ejca.2022.06.011
European journal of cancer (Oxford, England : 1990), 173, 178-193. Elsevier Ltd.
ABCTB Investigators 2022, ' Incorporating progesterone receptor expression into the PREDICT breast prognostic model ', European journal of cancer (Oxford, England : 1990), vol. 173, pp. 178-193 . https://doi.org/10.1016/j.ejca.2022.06.011
European Journal of Cancer, 173, 178-193. ELSEVIER SCI LTD
ISSN: 0959-8049
Popis: Background: Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2).Method: The prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance.Results: Having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0. 902 for patients with ER-positive tumours (p = 2.3 x 10(-6)) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted.Conclusion: The inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predic-tions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration. (C) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Databáze: OpenAIRE