LUAI Challenge 2021 on Learning to Understand Aerial Images

Autor: Gui-Song Xia, Licheng Jiao, Lingqi Wang, Jiahao Wang, Zixiao Zhang, Tianzhi Ma, Fang Liu, Marcello Pelillo, Jiebo Luo, Wenming Tan, Xiang Bai, Serge Belongie, Jiaxuan Zhao, Zi-han Gao, Jiaming Han, Liangpei Zhang, Yiming Hui, Qianyue Bao, Shengyang Li, Hao Wang, Yi Zuo, Zhuojun Dong, Jian Ding, Kaixuan Hu, Chaohui Yu, Michael Ying Yang, Qiang Zhou, Shang Liu, Chang Meng, Jie Zhang, Yingjia Bu, Nan Xue, Zhe Yang, Wei Li, Mihai Datcu, Ming Qian
Přispěvatelé: Department of Earth Observation Science, UT-I-ITC-ACQUAL, Faculty of Geo-Information Science and Earth Observation
Rok vydání: 2021
Předmět:
Zdroj: Proceedings-2021 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021, 762-768
STARTPAGE=762;ENDPAGE=768;TITLE=Proceedings-2021 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
DOI: 10.1109/iccvw54120.2021.00090
Popis: This report summarizes the results of Learning to Understand Aerial Images (LUAI) 2021 challenge held on ICCV 2021, which focuses on object detection and semantic segmentation in aerial images. Using DOTA-v2.0 and GID-15 datasets, this challenge proposes three tasks for oriented object detection, horizontal object detection, and semantic segmentation of common categories in aerial images. This challenge received a total of 146 registrations on the three tasks. Through the challenge, we hope to draw attention from a wide range of communities and call for more efforts on the problems of learning to understand aerial images.
7 pages, 2 figures, accepted by ICCVW 2021
Databáze: OpenAIRE