GMFβ controls branched actin content and lamellipodial retraction in fibroblasts

Autor: James E. Bear, Heath E. Johnson, Sreeja B. Asokan, Samantha J. King, Jason M. Haugh, Elizabeth M. Haynes
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: The Journal of Cell Biology
ISSN: 1540-8140
0021-9525
Popis: The primary activity of GMFβ in vivo is actin branch disassembly (and not inhibition of Arp2/3 activation), and this activity plays an important role in lamellipodial dynamics and directional migration toward ECM cues.
The lamellipodium is an important structure for cell migration containing branched actin nucleated via the Arp2/3 complex. The formation of branched actin is relatively well studied, but less is known about its disassembly and how this influences migration. GMF is implicated in both Arp2/3 debranching and inhibition of Arp2/3 activation. Modulation of GMFβ, a ubiquitous GMF isoform, by depletion or overexpression resulted in changes in lamellipodial dynamics, branched actin content, and migration. Acute pharmacological inhibition of Arp2/3 by CK-666, coupled to quantitative live-cell imaging of the complex, showed that depletion of GMFβ decreased the rate of branched actin disassembly. These data, along with mutagenesis studies, suggest that debranching (not inhibition of Arp2/3 activation) is a primary activity of GMFβ in vivo. Furthermore, depletion or overexpression of GMFβ disrupted the ability of cells to directionally migrate to a gradient of fibronectin (haptotaxis). These data suggest that debranching by GMFβ plays an important role in branched actin regulation, lamellipodial dynamics, and directional migration.
Databáze: OpenAIRE