Transparent Nacre‐like Composites Toughened through Mineral Bridges
Autor: | Florian Bouville, Madeleine Fellner, André R. Studart, Tommaso Magrini, Simon Moser, Alessandro Lauria |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Advanced Functional Materials, 30 (27) |
ISSN: | 1616-3028 1616-301X |
DOI: | 10.3929/ethz-b-000417234 |
Popis: | Bulk materials with remarkable mechanical properties have been developed by incorporating design principles of biological nacre into synthetic composites. However, this potential has not yet been fully leveraged for the fabrication of tough and strong materials that are also optically transparent. In this work, a manufacturing route that enables the formation of nacre‐like mineral bridges in a bioinspired composite consisting of glass platelets infiltrated with an index‐matching polymer matrix is developed. By varying the pressure applied during compaction of the glass platelets, composites with tunable levels of mineral bridges and platelet interconnectivity can be easily fabricated. The effect of platelet interconnectivity on the mechanical strength and fracture behavior of the bioinspired composites is investigated by performing state‐of‐the‐art fracture experiments combined with in situ electron microscopy. The results show that the formation of interconnections between platelets leads to bulk transparent materials with an unprecedented combination of strength and fracture toughness. This unusual set of properties can potentially fulfill currently unmet demands in electronic displays and related technologies. Advanced Functional Materials, 30 (27) ISSN:1616-3028 ISSN:1616-301X |
Databáze: | OpenAIRE |
Externí odkaz: |