On the nonlinear stability of the triangular points in the circular spatial restricted three-body problem
Autor: | Jesús F. Palacián, Claudio Vidal, Patricia Yanguas, Daniela Cárcamo-Díaz |
---|---|
Přispěvatelé: | Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas, Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. INAMAT2 - Institute for Advanced Materials and Mathematics, Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila, Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. InaMat - Institute for Advanced Materials |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Exponential estimates
Nonlinear stability 010102 general mathematics Mathematical analysis 010103 numerical & computational mathematics L4 and L5 Mass ratio Three-body problem Formal and Lie stability 01 natural sciences Stability (probability) Mathematics (miscellaneous) Resonances 0101 mathematics Elliptic equilibria Restricted three-body problem Mathematics |
Zdroj: | Academica-e. Repositorio Institucional de la Universidad Pública de Navarra instname Academica-e: Repositorio Institucional de la Universidad Pública de Navarra Universidad Pública de Navarra |
Popis: | The well-known problem of the nonlinear stability of L4 and L5 in the circular spatial restricted three-body problem is revisited. Some new results in the light of the concept of Lie (formal) stability are presented. In particular, we provide stability and asymptotic estimates for three specific values of the mass ratio that remained uncovered. Moreover, in many cases we improve the estimates found in the literature. The authors are partially supported by Project MTM 2017-88137-C2-1-P of the Ministry of Science, Innovation and Universities of Spain. D. Cárcamo-Díaz acknowledges support from CONICYT PhD/2016-21161143. C. Vidal is partially supported by Fondecyt grant 1180288. |
Databáze: | OpenAIRE |
Externí odkaz: |