A nonlinear lower bound for constant depth arithmetical circuits via the discrete uncertainty principle

Autor: Kenneth W. Regan, Maurice J. Jansen
Rok vydání: 2008
Předmět:
Zdroj: Theoretical Computer Science. 409(3):617-622
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2008.09.029
Popis: We prove a superlinear lower bound on the size of a bounded depth bilinear arithmetical circuit computing cyclic convolution. Our proof uses the strengthening of the Donoho–Stark uncertainty principle [D.L. Donoho, P.B. Stark, Uncertainty principles and signal recovery, SIAM Journal of Applied Mathematics 49 (1989) 906–931] given by Tao [T. Tao, An uncertainty principle for cyclic groups of prime order, Mathematical Research Letters 12 (2005) 121–127], and a combinatorial lemma by Raz and Shpilka [R. Raz, A. Shpilka, Lower bounds for matrix product, in arbitrary circuits with bounded gates, SIAM Journal of Computing 32 (2003) 488–513]. This combination and an observation on ranks of circulant matrices, which we use to give a much shorter proof of the Donoho–Stark principle, may have other applications.
Databáze: OpenAIRE