Korn's inequality for periodic solids and convergence rate of homogenization

Autor: Giuseppe Cardone, A. Corbo Esposito, Serguei A. Nazarov
Přispěvatelé: Cardone, G, Esposito, Ac, Nazarov, Sa
Rok vydání: 2009
Předmět:
Zdroj: Applicable Analysis. 88:847-876
ISSN: 1563-504X
0003-6811
Popis: In a three-dimensional solid with arbitrary periodic Lipschitz perforation the Korn inequality is proved with a constant independent of the perforation size. The convergence rate of homogenization as a function of the Sobolev-Slobodetskii smoothness of data is also estimated. We improve foregoing results in elasticity dropping customary restrictions on the shape of the periodicity cell and superfluous smoothness and smallness assumptions on the external forces and traction.
Databáze: OpenAIRE