Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning

Autor: Ahcene Habbi, Boudouaoui, Yassine
Jazyk: angličtina
Rok vydání: 2014
Předmět:
DOI: 10.5281/zenodo.1097225
Popis: This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.
{"references":["D.T. Pham, D. Karaboga, Intelligent optimisation techniques, Springer\n(2000).","S. Cao, N. W. Rees et G. Feng, Analysis and design for a class of complex\ncontrol systems – Part I: Fuzzy modelling and identification, Automatica,\n33(1997), 1017-1028.","D. Karaboga, An idea based on honey bee swarm for numerical\noptimization. Technical Report-TR06, Erciyes University, Engineering\nFaculty, Computer Engineering Department, (2005).","D. Karaboga, B. Basturk, A powerful and efficient algorithm for\nnumerical function optimization: artificial bee colony (ABC) algorithm,\nJournal of Global optimization, 39 (2007), 459-471.","L. Zhao, F. Qjan, Y. Yang, Y. Zeng, H. Su, Automatically extracting TS\nfuzzy models using cooperative random learning particle swarm\noptimization, Applied Soft Computing, 10(2010), 938-944.","H. Habbi, M. Kidouche, M. Zelmat, Data-driven fuzzy models for\nnonlinear identification of a complex heat exchanger, Applied\nMathematical Modeling, 35 (2011), 1470-1482.","C. Lee, Fuzzy logic in control systems, IEEE Transactions on systems,\nman and cybernetics, 20(1990), 419-435.","H. Habbi, M. Zelmat., B. Ould Bouamama, A dynamic fuzzy model for a\ndrum-boiler-turbine system, Automatica, 39 (2003), 1213-1219.","U. Maulik, S. Bandyopadhyay, Genetic algorithm-based clustering\ntechnique, Pattern recognition, 33(2000), 1455-1465.\n[10] M. Gendreau, J. Potvin, Handbook of metaheuristics, Springer (2010).\n[11] H. Habbi, Artificial bee colony optimization algorithm for TS-type fuzzy\nsystems learning, 25th International Conference of European Chapter on\nCombinatorial Optimization, ECCO XXV, April 26-28, (2012), Antalya,\nTurkey\n[12] M. Kim, C. Kim, J. Lee, Evolving compact and interpretable\nTakagi-Sugeno fuzzy models with a new encoding scheme, IEEE\nTransactions on systems, man and cybernetics, 36(2006), 1006-1022.\n[13] J. Abonyi, B. Feil, Cluster analysis for data mining and system\nidentification, Birkhauser (2007).\n[14] H. Habbi, M. Kidouche, M. Kinnaert, M. Zelmat, Fuzzy model-based\nfault detection and diagnosis for a pilot heat exchanger, International\nJournal of Systems Science, 42(2011), 587-599.\n[15] A.F. Gomez-Skarmeta, M. Delgado, M.A. Vila, About the use of fuzzy\nclustering techniques for fuzzy model identification, Fuzzy sets and\nsystems, 106 (1999), 179-188.\n[16] A. Fink, M. Fischer, O. Nelles, R. Isermann, Supervision of nonlinear\nadaptive controllers based on fuzzy models, Control Engineering\nPractice. 8 (2000), 1093-1105.\n[17] Z. Su, P. Wang, J. Shen, Y. Zhang, L. Chen, Convenient T-S fuzzy model\nwith enhanced performance using a novel swarm intelligent fuzzy\nclustering technique, Journal of Process Control 22 (2012), 108-124.\n[18] C.W. Xu, Z. Yong, Fuzzy model identification and self-learning for\ndynamic systems, IEEE Transactions on Systems, Man and Cybernetics\n17(4) (1987), 683-689.\n[19] J.Q. Chen, Y.G. Xi, et al., A clustering algorithm for fuzzy model\nidentification, Journal of Fuzzy Sets and Systems, 38 (1998), 319-329.\n[20] N. Li, S.Y. Li, Y.G. Xi, Multi-model modeling method based on\nsatisfactory clustering, Control Theory & Application 20(5) (2003),\n783-787.\n[21] G. Zhu, S. Kwong, Gbest-guided artificial bee colony algorithm for\nnumerical function optimization, 217(2010), 3166-3173."]}
Databáze: OpenAIRE