Using graph learning to understand adverse pregnancy outcomes and stress pathways

Autor: Cosma Rohilla Shalizi, Octavio Mesner, Tamar Krishnamurti, Ann Borders, Elizabeth A. Casman, Alex Davis, Hyagriv N. Simhan, Lauren Keenan-Devlin
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Gestational hypertension
Hydrocortisone
Maternal Health
Social Sciences
Blood Pressure
Vascular Medicine
Families
0302 clinical medicine
Endocrinology
Pre-Eclampsia
Pregnancy
Medicine and Health Sciences
Psychology
Prospective Studies
Children
030219 obstetrics & reproductive medicine
Multidisciplinary
Obstetrics
Gestational age
Obstetrics and Gynecology
Stillbirth
3. Good health
Gestational diabetes
Hypertension
Medicine
Female
medicine.symptom
Live birth
Live Birth
Infants
Algorithms
Infant
Premature

Research Article
Adult
medicine.medical_specialty
Endocrine Disorders
Science
Psychological Stress
Gestational Age
Preterm Birth
Statistics
Nonparametric

03 medical and health sciences
Hypertensive Disorders in Pregnancy
Mental Health and Psychiatry
medicine
Diabetes Mellitus
Humans
Gestational Diabetes
business.industry
Infant
Newborn

Biology and Life Sciences
Hypertension
Pregnancy-Induced

Infant
Low Birth Weight

medicine.disease
Delivery
Obstetric

Preeclampsia
United States
Abortion
Spontaneous

Pregnancy Complications
Low birth weight
Diabetes
Gestational

Age Groups
Metabolic Disorders
People and Places
Birth
Small for gestational age
Women's Health
Population Groupings
business
Premature rupture of membranes
030217 neurology & neurosurgery
Biomarkers
Stress
Psychological

Hair
Zdroj: PLoS ONE, Vol 14, Iss 9, p e0223319 (2019)
PLoS ONE
ISSN: 1932-6203
Popis: To identify pathways between stress indicators and adverse pregnancy outcomes, we applied a nonparametric graph-learning algorithm, PC-KCI, to data from an observational prospective cohort study. The Measurement of Maternal Stress study (MOMS) followed 744 women with a singleton intrauterine pregnancy recruited between June 2013 and May 2015. Infant adverse pregnancy outcomes were prematurity (
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje