On Hybrid Type Nonlinear Fractional Integrodifferential Equations
Autor: | Adem Kilicman, Faten H. Damag, Awsan T. Al-Arioi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
fractional integro-differential equation
Work (thermodynamics) General Mathematics Lipschitz conditions Fixed-point theorem 02 engineering and technology approximations solutions 01 natural sciences Upper and lower bounds Dhage theorem Operator (computer programming) 0202 electrical engineering electronic engineering information engineering Computer Science (miscellaneous) Applied mathematics Uniqueness hybrid type fractional integro-differential equation 0101 mathematics Engineering (miscellaneous) Mathematics lcsh:Mathematics 020208 electrical & electronic engineering 010102 general mathematics Hybrid type Riemann liouville lcsh:QA1-939 fixed point theorems Nonlinear system weaker mixed partial continuity |
Zdroj: | Mathematics Volume 8 Issue 6 Mathematics, Vol 8, Iss 984, p 984 (2020) |
ISSN: | 2227-7390 |
DOI: | 10.3390/math8060984 |
Popis: | In this paper, we introduce and investigate a hybrid type of nonlinear Riemann Liouville fractional integro-differential equations. We develop and extend previous work on such non-fractional equations, using operator theoretical techniques, and find the approximate solutions. We prove the existence as well as the uniqueness of the corresponding approximate solutions by using hybrid fixed point theorems and provide upper and lower bounds to these solutions. Furthermore, some examples are provided, in which the general claims in the main theorems are demonstrated. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |