Oxidative neurotoxicity in rat cerebral cortex neurons: Synergistic effects of H2O2 and NO on apoptosis involving activation of p38 mitogen-activated protein kinase and caspase-3
Autor: | Jiz Yuh Wang, Andrew Yau-Chik Shum, Yi Jung Ho, Jia Yi Wang |
---|---|
Rok vydání: | 2003 |
Předmět: |
Programmed cell death
Blotting Western Apoptosis DNA Fragmentation S-Nitroso-N-Acetylpenicillamine DNA laddering Biology Nitric Oxide medicine.disease_cause p38 Mitogen-Activated Protein Kinases Nitric oxide Rats Sprague-Dawley Cellular and Molecular Neuroscience chemistry.chemical_compound Fetus Peroxynitrous Acid In Situ Nick-End Labeling medicine Animals Nitric Oxide Donors Enzyme Inhibitors Cells Cultured Cerebral Cortex Neurons chemistry.chemical_classification Reactive oxygen species Dose-Response Relationship Drug Caspase 3 Neurotoxicity Drug Synergism Hydrogen Peroxide Oxidants medicine.disease Immunohistochemistry Rats Cell biology Oxidative Stress chemistry Caspases Mitogen-Activated Protein Kinases S-Nitroso-N-acetylpenicillamine Extracellular Space Reactive Oxygen Species Peroxynitrite Oxidative stress |
Zdroj: | Journal of Neuroscience Research. 72:508-519 |
ISSN: | 1097-4547 0360-4012 |
DOI: | 10.1002/jnr.10597 |
Popis: | Oxidative stress in the brain has been increasingly associated with the development of numerous human neurological diseases. Microglia, activated upon neuronal injury or inflammatory stimulation, are known to release superoxide anion (*O(2) (-)), hydrogen peroxide (H(2)O(2)), and nitric oxide (NO), thereby further contributing to oxidative neurotoxicity. The reaction of NO and *O(2) (-), forming the toxic peroxynitrite (ONOO(-)), has been proposed to play a pathogenic role in neuronal injury. However, the interactions between H(2)O(2) and NO during oxidative stress, which may promote or diminish cell death, is less clear. In this study, we explored oxidative neurotoxicity induced by H(2)O(2) plus NO in primary cultures of rat cerebral cortex neurons. As the mechanisms may involve reactions between H(2)O(2) and NO, we monitored the production of ONOO(-)and reactive oxygen species (ROS) throughout the experiments. Results indicated that the NO donor S-nitroso-N-acetyl-D, L-penicillamine (SNAP) and H(2)O(2) by themselves elicited neuronal death in a concentration- and time-dependent manner. Sublytic concentrations of H(2)O(2) plus SNAP were sufficient to induce neuronal apoptosis as determined by DNA laddering and fluorescent staining of apoptotic nuclei. Transient ONOO(-)increase was accompanied by rapid H(2)O(2) decay and NO production, whereas ROS slowly decreased following treatment. Furthermore, p38 mitogen-activated protein kinase (MAPK) activation and the cleavage of caspase-3 were observed. Conversely, inhibition of p38 MAPK and caspase-3 significantly reduced apoptotic death induced by H(2)O(2) plus SNAP. These data suggest that H(2)O(2) and NO act synergistically to induce neuronal death through apoptosis in which activation of p38 MAPK and caspase-3 is involved. |
Databáze: | OpenAIRE |
Externí odkaz: |