X-ray Transform and Boundary Rigidity for Asymptotically Hyperbolic Manifolds
Autor: | Plamen Stefanov, Gunther Uhlmann, C. Robin Graham, Colin Guillarmou |
---|---|
Přispěvatelé: | Department of Mathematics [Seattle], University of Washington [Seattle], Université Paris-Sud - Paris 11 (UP11), Department of mathematics Purdue University, Purdue University [West Lafayette], European Project: 725967,IPFLOW |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Mathematics - Differential Geometry
High Energy Physics - Theory FOS: Physical sciences 01 natural sciences Mathematics - Analysis of PDEs Rigidity (electromagnetism) 35R30 37D40 53C22 0103 physical sciences Geodesic flow FOS: Mathematics 0101 mathematics [MATH]Mathematics [math] Mathematical Physics Mathematics Algebra and Number Theory X-ray transform 010102 general mathematics Mathematical analysis Mathematical Physics (math-ph) Inverse problem Differential Geometry (math.DG) High Energy Physics - Theory (hep-th) [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] 010307 mathematical physics Geometry and Topology Analysis of PDEs (math.AP) |
Zdroj: | Annales de l'Institut Fourier Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2020, 69 (7), pp.2857-2919. ⟨10.5802/aif.3339⟩ |
ISSN: | 0373-0956 1777-5310 |
DOI: | 10.5802/aif.3339⟩ |
Popis: | We consider the boundary rigidity problem for asymptotically hyperbolic manifolds. We show injectivity of the X-ray transform in several cases and consider the non-linear inverse problem which consists of recovering a metric from boundary measurements for the geodesic flow. Comment: 54 pages |
Databáze: | OpenAIRE |
Externí odkaz: |