Substituent Effects on the Antibacterial Activity of Nitrogen−Carbon-Linked (Azolylphenyl)oxazolidinones with Expanded Activity Against the Fastidious Gram-Negative Organisms Haemophilus influenzae and Moraxella catarrhalis
Autor: | Gary E. Zurenko, Betty H. Yagi, Douglas K Hutchinson, D E Emmert, David R. Graber, Jackson B. Hester, Stuart A. Garmon, Judith C. Hamel, Michael R Barbachyn, Ronda D. Schaadt, Michael J. Genin, Douglas Stapert, Joel Morris, David J. Anderson, Debra A. Allwine, R J Reischer, Charles W. Ford, Kevin C. Grega |
---|---|
Rok vydání: | 2000 |
Předmět: |
Azoles
Stereochemistry Triazole Administration Oral Microbial Sensitivity Tests Pyrazole medicine.disease_cause Haemophilus influenzae Mice Structure-Activity Relationship chemistry.chemical_compound Drug Discovery medicine Eperezolid Animals Humans Organic chemistry Oxazoles Moraxella Antibacterial agent chemistry.chemical_classification biology biology.organism_classification Anti-Bacterial Agents chemistry Molecular Medicine Azole Methicillin Resistance Antibacterial activity Moraxella catarrhalis |
Zdroj: | Journal of Medicinal Chemistry. 43:953-970 |
ISSN: | 1520-4804 0022-2623 |
DOI: | 10.1021/jm990373e |
Popis: | A series of new nitrogen-carbon-linked (azolylphenyl)oxazolidinone antibacterial agents has been prepared in an effort to expand the spectrum of activity of this class of antibiotics to include Gram-negative organisms. Pyrrole, pyrazole, imidazole, triazole, and tetrazole moieties have been used to replace the morpholine ring of linezolid (2). These changes resulted in the preparation of compounds with good activity against the fastidious Gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. The unsubstituted pyrrolyl analogue 3 and the 1H-1,2,3-triazolyl analogue 6 have MICs against H. influenzae = 4 microgram/mL and M. catarrhalis = 2 microgram/mL. Various substituents were also placed on the azole moieties in order to study their effects on antibacterial activity in vitro and in vivo. Interesting differences in activity were observed for many analogues that cannot be rationalized solely on the basis of sterics and position/number of nitrogen atoms in the azole ring. Differences in activity rely strongly on subtle changes in the electronic character of the overall azole systems. Aldehyde, aldoxime, and cyano azoles generally led to dramatic improvements in activity against both Gram-positive and Gram-negative bacteria relative to unsubstituted counterparts. However, amide, ester, amino, hydroxy, alkoxy, and alkyl substituents resulted in no improvement or a loss in antibacterial activity. The placement of a cyano moiety on the azole often generates analogues with interesting antibacterial activity in vitro and in vivo. In particular, the 3-cyanopyrrole, 4-cyanopyrazole, and 4-cyano-1H-1,2,3-triazole congeners 28, 50, and 90 had S. aureus MICs |
Databáze: | OpenAIRE |
Externí odkaz: |