Complexity of near-optimal robust versions of multilevel optimization problems
Autor: | Luce Brotcorne, Mathieu Besançon, Miguel F. Anjos |
---|---|
Přispěvatelé: | Integrated Optimization with Complex Structure (INOCS), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université libre de Bruxelles (ULB)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Zuse Institute Berlin (ZIB), University of Edinburgh |
Rok vydání: | 2020 |
Předmět: |
FOS: Computer and information sciences
Mathematical optimization 021103 operations research Control and Optimization Computer science complexity theory Mathematics Subject Classification (2010) 91A65 0211 other engineering and technologies Computational intelligence [INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] 0102 computer and information sciences 02 engineering and technology Computational Complexity (cs.CC) 01 natural sciences Multilevel optimization Computer Science - Computational Complexity multilevel optimization 010201 computation theory & mathematics Robustness (computer science) Optimization and Control (math.OC) Complexity class FOS: Mathematics near-optimality robustness [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] Mathematics - Optimization and Control |
Zdroj: | Besançon, M, Anjos, M F & Brotcorne, L 2021, ' Complexity of near-optimal robust versions of multilevel optimization problems ', Optimization letters . https://doi.org/10.1007/s11590-021-01754-9 Optimization Letters Optimization Letters, 2021, 15 (8), pp.2597-2610. ⟨10.1007/s11590-021-01754-9⟩ |
ISSN: | 1862-4472 1862-4480 |
DOI: | 10.48550/arxiv.2011.00824 |
Popis: | Near-optimality robustness extends multilevel optimization with a limited deviation of a lower level from its optimal solution, anticipated by higher levels. We analyze the complexity of near-optimal robust multilevel problems, where near-optimal robustness is modelled through additional adversarial decision-makers. Near-optimal robust versions of multilevel problems are shown to remain in the same complexity class as the problem without near-optimality robustness under general conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |