Kahane–Khintchine inequalities and functional central limit theorem for stationary random fields

Autor: Mohamed El Machkouri
Přispěvatelé: Laboratoire de Mathématiques Raphaël Salem (LMRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2002
Předmět:
Zdroj: Stochastic Processes and their Applications
Stochastic Processes and their Applications, Elsevier, 2002, 102 (2), pp.285-299. ⟨10.1016/S0304-4149(02)00178-3⟩
ISSN: 0304-4149
DOI: 10.1016/s0304-4149(02)00178-3
Popis: We establish new Kahane–Khintchine inequalities in Orlicz spaces induced by exponential Young functions for stationary real random fields which are bounded or satisfy some finite exponential moment condition. Next, we give sufficient conditions for partial sum processes indexed by classes of sets satisfying some metric entropy condition to converge in distribution to a set-indexed Brownian motion. Moreover, the class of random fields that we study includes φ-mixing and martingale difference random fields.
Databáze: OpenAIRE