Generic Linear ESO for the State Observation of Unknown Nonlinear SISO Systems

Autor: Emmanuel Piat, Fawzia Amokrane, Joël Abadie, Juan Escareno, Adrien Drouot
Přispěvatelé: Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Systèmes et Réseaux Intelligents (XLIM-SRI), XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique des Sciences Avancées (IPSA)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: 2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE)
2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE), Dec 2019, Bali, Indonesia. pp.270-275, ⟨10.1109/MoRSE48060.2019.8998678⟩
International Conference on MechatrOnics, Robotics, and System Engineering
International Conference on MechatrOnics, Robotics, and System Engineering, Dec 2019, Bali, Indonesia. ⟨10.1109/MoRSE48060.2019.8998678⟩
DOI: 10.1109/MoRSE48060.2019.8998678⟩
Popis: International audience; "This paper introduces a generic procedure for the state estimation of unknown nonlinear SISO systems, i.e. when no information is available on their structure, possibly time-varying parameters and potential disturbances.Such systems are met for instances for systems based on complex micro and nano mechatronic designs that are interacting in an unknown way with their environment at nano scales.This procedure relies on the choice of an arbitrary linear model and the use of a Generic Linear Extended State Observer, whose principle is also introduced in the paper.The proposed approach overcomes well-known model-based nonlinear techniques in the sense that it is easy to implement, all the while avoiding any identification step and mathematical complexity.Simulation results involving nonlinear systems, subject to external disturbances, compare the performance of the proposed approach to the one of some model-free nonlinear observers described in the literature."
Databáze: OpenAIRE