Boundary value problem for differential inclusions in Frechet spaces with multiple solutions of the homogeneous problem
Autor: | Valentina Taddei, Irene Benedetti, Luisa Malaguti |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: |
Multivalued boundary value problems
fixed points theorems General Mathematics Mathematical analysis Banach space Fixed-point theorem multivalued boundary value problems differential inclusions in Banach spaces compact operators Compact operator Elliptic boundary value problem Separable space Sobolev space Differential inclusion Boundary value problem Mathematics |
Zdroj: | Scopus-Elsevier |
Popis: | The paper deals with the multivalued boundary value problem x 0 2 A(t, x)x+ F(t, x) for a.a. t 2 (a, b), Mx(a) + Nx(b) = 0, in a separable, reflexive Banach space E. The nonlinearity F is weakly upper semicontinuous in x. We prove the existence of global solutions in the Sobolev space W 1,p ((a, b), E) with 1 < p < 1 endowed with the weak topol- ogy. We consider the case of multiple solutions of the associated homogeneous linearized problem. An example completes the discussion. |
Databáze: | OpenAIRE |
Externí odkaz: |