Quantitative MRI evaluation of glaucomatous changes in the visual pathway

Autor: Koji M. Nishiguchi, Mana Fukuda, Yasuko Tatewaki, Toru Nakazawa, Yasuyuki Taki, Izumi Matsudaira, Kazuko Omodaka, Noriko Himori, Takaki Murata
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Central Nervous System
Male
Eye Diseases
genetic structures
Glaucoma
lcsh:Medicine
Pathology and Laboratory Medicine
Nervous System
Diagnostic Radiology
0302 clinical medicine
Medicine and Health Sciences
Brain Damage
Prospective Studies
Gray Matter
lcsh:Science
Visual Cortex
Multidisciplinary
medicine.diagnostic_test
Radiology and Imaging
Brain
Middle Aged
Magnetic Resonance Imaging
medicine.anatomical_structure
Neurology
Optic nerve
Female
Anatomy
medicine.symptom
Glaucoma
Open-Angle

Research Article
Adult
medicine.medical_specialty
Imaging Techniques
Central nervous system
Neuroimaging
Brain damage
Research and Analysis Methods
03 medical and health sciences
Signs and Symptoms
Atrophy
Ocular System
Diagnostic Medicine
Ophthalmology
medicine
Humans
Aged
Retina
business.industry
lcsh:R
Biology and Life Sciences
Optic Nerve
Magnetic resonance imaging
medicine.disease
eye diseases
Cross-Sectional Studies
Visual cortex
030221 ophthalmology & optometry
lcsh:Q
business
030217 neurology & neurosurgery
Neuroscience
Zdroj: PLoS ONE, Vol 13, Iss 7, p e0197027 (2018)
PLoS ONE
ISSN: 1932-6203
Popis: Background The aims of this study were to investigate glaucomatous morphological changes quantitatively in the visual cortex of the brain with voxel-based morphometry (VBM), a normalizing MRI technique, and to clarify the relationship between glaucomatous damage and regional changes in the visual cortex of patients with open-angle glaucoma (OAG). Methods Thirty-one patients with OAG (age: 55.9 ± 10.7, male: female = 9: 22) and 20 age-matched controls (age: 54.9 ± 9.8, male: female = 10: 10) were included in this study. The cross-sectional area (CSA) of the optic nerve was manually measured with T2-weighed MRI. Images of the visual cortex were acquired with T1-weighed 3D magnetization-prepared rapid acquisition with gradient echo (MPRAGE) sequencing, and the normalized regional visual cortex volume, i.e., gray matter density (GMD), in Brodmann areas (BA) 17, 18, and 19, was calculated with a normalizing technique based on statistic parametric mapping 8 (SPM8) analysis. We compared the regional GMD of the visual cortex in the control subjects and OAG patients. Spearman’s rank correlation analysis was used to determine the relationship between optic nerve CSA and GMD in BA 17, 18, and 19. Results We found that the normal and OAG patients differed significantly in optic nerve CSA (p < 0.001) and visual cortex GMD in BA 17 (p = 0.030), BA 18 (p = 0.003), and BA 19 (p = 0.005). In addition, we found a significant correlation between optic nerve CSA and visual cortex GMD in BA 19 (r = 0.33, p = 0.023), but not in BA 17 (r = 0.17, p = 0.237) or BA 18 (r = 0.24, p = 0.099). Conclusion Quantitative MRI parametric evaluation of GMD can detect glaucoma-associated anatomical atrophy of the visual cortex in BA 17, 18, and 19. Furthermore, GMD in BA 19 was significantly correlated to the damage level of the optic nerve, as well as the retina, in patients with OAG. This is the first demonstration of an association between the cortex of the brain responsible for higher-order visual function and glaucoma severity. Evaluation of the visual cortex with MRI is thus a very promising potential method for objective examination in OAG.
Databáze: OpenAIRE