Homologation Method for Preparation of Substituted Pentacenes and Naphthacenes

Autor: Takahiro Ohe, Fanzhi Kong, Tamotsu Takahashi, Ken-ichiro Kanno, Shi Li, Wenying Huang, Baojian Shen, Kiyohiko Nakajima
Rok vydání: 2006
Předmět:
Zdroj: The Journal of Organic Chemistry. 71:7967-7977
ISSN: 1520-6904
0022-3263
DOI: 10.1021/jo060923y
Popis: Multi-substituted pentacenes, such as 1,2,3,4,6,8,9,10,11,13-decasubstituted pentacenes (Type I), 1,2,3,4,6,13-hexasubstituted pentacenes (Type II), 1,2,3,4-tetrasubstituted pentacenes (Type III), and 2,3-disubstituted pentacenes (Type IV), 1,2,3,4,6,11-hexasubstituted naphthacenes (Type V), 1,2,3,4-tetrasubstituted naphthacenes (Type VI), and 2,3-disubstituted naphthacenes (Type VII), were prepared by a homologation method. The homologation method involved the conversion of phthalic acid ester derivatives to two ring extended phthalic acid ester derivatives via diynes and metallacyclopentadienes using transition metals, such as Zr and Rh. For the formation of pentacenes of Type III and Type IV and naphthacenes of Type VII, trimethylsilyl-substituted diynes were used for zirconocene-mediated cyclization. Elimination of the trimethylsilyl groups after the cyclization afforded nonsubstituted position on pentacenes or naphthacenes. Structures of 1,4,6,8,9,10,11,13-octaethyl-2,3-bis(methoxycarbonyl)pentacene (9a) and 8,9,10,11-tetraethyl-2,3-bis(methoxycarbonyl)-1,4,6,13-tetrapropylpentacene (9b) were determined by X-ray analysis. The structure of 9a had the herringbone packing system in the crystal like nonsubstituted pentacene. However, 9b, whose substituents at 1,4,6,13-positions were changed from Et to Pr at 1,4,6,13-positions of 9a, had the face parallel plane system in the crystal.
Databáze: OpenAIRE