Synthesis of Carbon–Metal Multi-Strand Nanocomposites by Discharges in Heptane Between Two Metallic Electrodes
Autor: | Thierry Belmonte, H. Kabbara, J.-M. Martinez, Min Suk Cha, Ahmad Hamdan, M.-A. Courty |
---|---|
Přispěvatelé: | Clean Combustion Research Center - CCRC (Thuwal, Saudi Arabia), King Abdullah University of Science and Technology (KAUST), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Procédés, Matériaux et Energie Solaire (PROMES), Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2017 |
Předmět: |
Materials science
discharge in liquids General Chemical Engineering Nanoparticle Nanotechnology 02 engineering and technology 01 natural sciences 7. Clean energy [SPI.MAT]Engineering Sciences [physics]/Materials chemistry.chemical_compound 0103 physical sciences nanoparticle synthesis Pyrolytic carbon dielectrophoresis 010302 applied physics Heptane Nanocomposite [SPI.PLASMA]Engineering Sciences [physics]/Plasmas General Chemistry Dielectrophoresis 021001 nanoscience & nanotechnology Condensed Matter Physics Surfaces Coatings and Films Amorphous solid chemistry Chemical engineering Electrode metal/carbon nanocomposite Particle 0210 nano-technology |
Zdroj: | Plasma Chemistry and Plasma Processing Plasma Chemistry and Plasma Processing, Springer Verlag, 2017, 37 (4), pp.1069-1090. ⟨10.1007/s11090-017-9816-8⟩ |
ISSN: | 1572-8986 0272-4324 |
Popis: | We studied composite wires assembled from electric field-driven nanoparticles in a dielectric liquid (heptane) to elucidate the exact processes and controlling factors involved in the synthesis of the multi-phase nanocomposites. Filamentary wires are synthesized by a two-step process: (1) abundant nanoparticle production, mostly of carbonaceous types, from heptane decomposition by spark discharge and of metal nanoparticles by electrode erosion and (2) assembly of hydrogenated amorphous carbonaceous nano-clusters with incorporated metal nanoparticles forming wires by dielectrophoretic transport while maintaining a high electric field between electrodes kept sufficiently separated to avoid breakdown. Four types of nanocomposites products are identified to form at different steps in distinctive zones of the setup. The black carbonaceous agglomerates with metal spherules made by electrode erosion represent the pyrolytic residues of heptane decomposition by spark discharge during step 1. The filamentary wires grown in the interelectrode gap during step 2 get assembled by dielectrophoretic transport and chaining forces. Their great stability is shown to express the concurrent effect of polymerization favoured by the abundance of metal catalysts. The nature, abundance, and transformation of solid particles from the source materials versus discharge conditions control the morphological and compositional diversity of the wires. The production of mineral and metal nano-particles traces the efficiency of dielectrophoresis to separate compound particle mixtures by size and to co-synthesize nanostructured microcrystals and nanocomposites. The link between impurities and the variability from nano- to micro-scales of the synthesized products provides an innovative contribution to the knowledge of nanocomposite synthesis triggered by electric field. |
Databáze: | OpenAIRE |
Externí odkaz: |