Driving Organic Nanocrystals Dissolution Through Electrochemistry
Autor: | Alessio Orbelli Biroli, Franco Ciccacci, Marcello Campione, Alberto Bossi, S Trabattoni, Stefania De Rosa, Andrea Bassi, Luca Tortora, Chiara Castiglioni, Claudia Filoni, Gianlorenzo Bussetti, Lamberto Duò |
---|---|
Přispěvatelé: | Bussetti, G, Filoni, C, Li Bassi, A, Bossi, A, Campione, M, Orbelli Biroli, A, Castiglioni, C, Trabattoni, S, De Rosa, S, Tortora, L, Ciccacci, F, Duò, L, Bussetti, Gianlorenzo, Filoni, Claudia, Li Bassi, Andrea, Bossi, Alberto, Campione, Marcello, Orbelli Biroli, Alessio, Castiglioni, Chiara, Trabattoni, Silvia, De Rosa, Stefania, Tortora, Luca, Ciccacci, Franco, Duò, Lamberto |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Materials science
liquid-phase atomic force microscopy Protonation Electrochemistry Crystal Metal organic nanocrystals chemistry.chemical_compound Molecule optical spectroscopy Dissolution QD1-999 Full Paper organic nanocrystal crystal dissolution General Chemistry Full Papers Porphyrin porphyrin protonation Chemistry Nanocrystal chemistry Chemical engineering electrochemistry visual_art visual_art.visual_art_medium ToF-SIMS porphyrin etch-pit formation |
Zdroj: | ChemistryOpen, Vol 10, Iss 8, Pp 748-755 (2021) ChemistryOpen |
Popis: | We have recently discussed how organic nanocrystal dissolution appears in different morphologies and the role of the solution pH in the crystal detriment process. We also highlighted the role of the local molecular chemistry in porphyrin nanocrystals having comparable structures: in water‐based acid solutions, protonation of free‐base porphyrin molecules is the driving force for crystal dissolution, whereas metal (ZnII) porphyrin nanocrystals remain unperturbed. However, all porphyrin types, having an electron rich π‐structure, can be electrochemically oxidized. In this scenario, a key question is: does electrochemistry represent a viable strategy to drive the dissolution of both free‐base and metal porphyrin nanocrystals? In this work, by exploiting electrochemical atomic force microscopy (EC‐AFM), we monitor in situ and in real time the dissolution of both free‐base and metal porphyrin nanocrystals, as soon as molecules reach the oxidation potential, showing different regimes according to the applied EC potential. Free‐base porphyrin (P) nanocrystals can be dissolved in acid electrolytes only when the second porphyrin oxidation is reached. Indeed, molecules only show a surface‐pit enhancement after the first oxidation. In addition, metal‐Ps, which are stable when immersed in acids, can be dissolved if their oxidation electrochemical potential is applied. These occurrences prove that molecule oxidation is the driving mechanism of crystal dissolution. |
Databáze: | OpenAIRE |
Externí odkaz: |