Additive normal tempered stable processes for equity derivatives and power-law scaling

Autor: Michele Azzone, Roberto Baviera
Rok vydání: 2021
Předmět:
Zdroj: Quantitative Finance. 22:501-518
ISSN: 1469-7696
1469-7688
DOI: 10.1080/14697688.2021.1983200
Popis: We introduce a simple model for equity index derivatives. The model generalizes well known L\`evy Normal Tempered Stable processes (e.g. NIG and VG) with time dependent parameters. It accurately fits Equity index implied volatility surfaces in the whole time range of quoted instruments, including small time horizon (few days) and long time horizon options (years). We prove that the model is an Additive process that is constructed using an Additive subordinator. This allows us to use classical L\`evy-type pricing techniques. We discuss the calibration issues in detail and we show that, in terms of mean squared error, calibration is on average two orders of magnitude better than both L\`evy processes and Self-similar alternatives. We show that even if the model loses the classical stationarity property of L\`evy processes, it presents interesting scaling properties for the calibrated parameters.
Databáze: OpenAIRE