Phase space structure and the path integral for gauge theories on a cylinder
Autor: | Sergey V. Shabanov |
---|---|
Rok vydání: | 1993 |
Předmět: |
High Energy Physics - Theory
Physics Nuclear and High Energy Physics Weyl group Spacetime Operator (physics) High Energy Physics::Lattice FOS: Physical sciences Astrophysics::Cosmology and Extragalactic Astrophysics symbols.namesake High Energy Physics - Theory (hep-th) Gauge group Phase space Path integral formulation symbols Symmetrization Gauge theory Mathematical physics |
DOI: | 10.48550/arxiv.hep-th/9308002 |
Popis: | The physical phase space of gauge field theories on a cylindrical spacetime with an arbitrary compact simple gauge group is shown to be the quotient $ {\bf R}^{2r}/W_A, $ $ r $ a rank of the gauge group, $ W_A $ the affine Weyl group. The PI formula resulting from Dirac's operator method contains a symmetrization with respect to $ W_A $ rather than the integration domain reduction. It gives a natural solution to Gribov's problem. Some features of fermion quantum dynamics caused by the nontrivial phase space geometry are briefly discussed. Comment: Saclay-T93/078 |
Databáze: | OpenAIRE |
Externí odkaz: |