Popis: |
The rate of respiratory O2 consumption by Chlamydomonas reinhardtii cell suspensions was greater after a period of photosynthesis than in the preceding dark period. This “light-enhanced dark respiration” (LEDR) was a function of both the duration of illumination and the photon fluence rate. Mass spectrometric measurements of gas exchange indicated that the rate of gross respiratory O2 consumption increased during photosynthesis, whereas gross respiratory CO2 production decreased in a photon fluence rate-dependent manner. The rate of postillumination O2 consumption provided a good measure of the O2 consumption rate in the light. LEDR was substantially decreased by the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea or glycolaldehyde, suggesting that LEDR was photosynthesis-dependent. The onset of photosynthesis resulted in an increase in the cellular levels of phosphoglycerate, malate, and phosphoenolpyruvate, and a decrease in whole-cell ATP and citrate levels; all of these changes were rapidly reversed upon darkening. These results are consistent with a decrease in the rate of respiratory carbon flow during photosynthesis, whereas the increase in respiratory O2 consumption during photosynthesis may be mediated by the export of photogenerated reductant from the chloroplast. We suggest that photosynthesis interacts with respiration at more than one level, simultaneously decreasing the rate of respiratory carbon flow while increasing the rate of respiratory O2 consumption. |