Quantitative Predictions Orchestrate Visual Signaling in Drosophila
Autor: | Gaby Maimon, Anmo J. Kim, Lisa M. Fenk, Cheng Lyu |
---|---|
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
Patch-Clamp Techniques genetic structures Sensory system Optic Flow Biology Signal General Biochemistry Genetics and Molecular Biology Visual processing 03 medical and health sciences 0302 clinical medicine Biological neural network Animals Visual Pathways Potassium Channels Inwardly Rectifying Set (psychology) Neurons Eye movement Efference copy Electrophysiology Drosophila melanogaster 030104 developmental biology Flight Animal Head Movements Neuroscience 030217 neurology & neurosurgery |
Zdroj: | Cell. 168:280-294.e12 |
ISSN: | 0092-8674 |
DOI: | 10.1016/j.cell.2016.12.005 |
Popis: | Vision influences behavior, but ongoing behavior also modulates vision in animals ranging from insects to primates. The function and biophysical mechanisms of most such modulations remain unresolved. Here, we combine behavioral genetics, electrophysiology, and high-speed videography to advance a function for behavioral modulations of visual processing in Drosophila. We argue that a set of motion-sensitive visual neurons regulate gaze-stabilizing head movements. We describe how, during flight turns, Drosophila perform a set of head movements that require silencing their gaze-stability reflexes along the primary rotation axis of the turn. Consistent with this behavioral requirement, we find pervasive motor-related inputs to the visual neurons, which quantitatively silence their predicted visual responses to rotations around the relevant axis while preserving sensitivity around other axes. This work proposes a function for a behavioral modulation of visual processing and illustrates how the brain can remove one sensory signal from a circuit carrying multiple related signals. |
Databáze: | OpenAIRE |
Externí odkaz: |