Fluorescent Trimethylated Naphthyridine Derivative with an Aminoalkyl Side Chain as the Tightest Non-aminoglycoside Ligand for the Bacterial A-site RNA

Autor: Seiichi Nishizawa, Masafumi Rokugawa, Yusuke Sato, Shô Itô, Hiroki Sugawara, Sayaka Yajima, Norio Teramae
Rok vydání: 2018
Předmět:
Zdroj: Chemistry - A European Journal. 24:13862-13870
ISSN: 0947-6539
Popis: The bacterial ribosomal decoding region of the aminoacyl-tRNA site (A-site) is one of the most validated target RNAs for antibiotic agents. Although natural aminoglycosides are well-characterized A-site binding ligands, high off-target effects and the growing emergence of bacterial resistance against aminoglycosides limit their clinical use. To circumvent these concerns with the aminoglycoside family, non-aminoglycoside A-site binding ligands have great potential as novel antibiotics against bacterial infections. This work describes a new class of small heterocyclic ligands based on the 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) structure for the bacterial (Escherichia coli) A-site. ATMND possessing an aminoethyl side chain is found to strongly and selectively bind to the internal loop of the A-site (Kd =0.44 μm; pH 7.0, I=0.06 m, 5 °C). Significantly, this ligand shows the tightest binding reported to date among non-aminoglycoside ligands. The binding study based on the thermodynamics and molecular modelling reveals key molecular interactions of ATMND-C2 -NH2 for high affinity to the A-site. This ligand is also demonstrated to be applicable to the fluorescence indicator displacement assay for assessing ligand/A-site interactions.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje