Convexifying Monotone Polygons

Autor: Steven M. Robbins, Erik D. Demaine, Michael Soss, Sylvain Lazard, Therese C. Biedl
Přispěvatelé: Department of Computer Science [Calgary] (CPSC), University of Calgary, Models, algorithms and geometry for computer graphics and vision (ISA), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), School of computer science [Ottawa] (SCS), Carleton University, Kamakoti V (IMSC, India) Rangarajan K (MCC, India) Rama R (IIT, Madras, India) Boopal E (IIT, Madras, India), Alok Aggarwal and C. Pandu Rangan
Jazyk: angličtina
Rok vydání: 1999
Předmět:
Zdroj: Algorithms and Computation ISBN: 9783540669166
ISAAC
DOI: 10.1007/3-540-46632-0_42⟩
Popis: The original publication is available at www.springerlink.com; International audience; This paper considers reconfigurations of polygons, where each polygon edge is a rigid link, no two of which can cross during the motion. We prove that one can reconfigure any monotone polygon into a convex polygon; a polygon is monotone if any vertical line intersects the interior at a (possibly empty) interval. Our algorithm computes in O(n2) time a sequence of O(n2) moves, each of which rotates just four joints at once.
Databáze: OpenAIRE