Stable All-Solid-State Lithium Metal Batteries Enabled by Machine Learning Simulation Designed Halide Electrolytes

Autor: Feng Li, Xiaobin Cheng, Lei-Lei Lu, Yi-Chen Yin, Jin-Da Luo, Gongxun Lu, Yu-Feng Meng, Hongsheng Mo, Te Tian, Jing-Tian Yang, Wen Wen, Zhi-Pan Liu, Guozhen Zhang, Cheng Shang, Hong-Bin Yao
Rok vydání: 2022
Předmět:
Zdroj: Nano letters. 22(6)
ISSN: 1530-6992
Popis: Solid electrolytes (SEs) with superionic conductivity and interfacial stability are highly desirable for stable all-solid-state Li-metal batteries (ASSLMBs). Here, we employ neural network potential to simulate materials composed of Li, Zr/Hf, and Cl using stochastic surface walking method and identify two potential unique layered halide SEs, named Li
Databáze: OpenAIRE