Decay of waves in strain gradient porous elasticity with Moore-Gibson-Thompson dissipation
Autor: | J. R. Fernández, A. Magaña, R. Quintanilla |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. ALBCOM - Algorísmia, Bioinformàtica, Complexitat i Mètodes Formals |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
74 Mechanics of deformable solids::74F Coupling of solid mechanics with other effects [Classificació AMS]
35 Partial differential equations::35Q Equations of mathematical physics and other areas of application [Classificació AMS] Porositat Moore-Gibson-Thompson dissipation mechanisms General Mathematics General Engineering General Physics and Astronomy Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC] Energy decay 35 Partial differential equations::35B Qualitative properties of solutions [Classificació AMS] Existence and uniqueness Strain gradient 74 Mechanics of deformable solids::74A Generalities axiomatics foundations of continuum mechanics of solids [Classificació AMS] Porosity Thermoelasticity Termoelasticitat |
Popis: | We study a one-dimensional problem arising in strain gradient porous-elasticity. Three different Moore–Gibson–Thompson dissipation mechanisms are considered: viscosity and hyperviscosity on the displacements, and weak viscoporosity. The existence and uniqueness of solutions are proved. The energy decay is also shown, being polynomial for the two first situations, unless a particular choice of the constitutive parameters is made in the hyperviscosity case. Finally, for the weak viscoporosity, only the slow decay can be expected. This article is part of the theme issue ‘Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)’. |
Databáze: | OpenAIRE |
Externí odkaz: |