Algebraic Hyperbolicity for Surfaces in Toric Threefolds
Autor: | Nathan Ilten, Christian Haase |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Algebra and Number Theory Mathematics::Commutative Algebra 010102 general mathematics 01 natural sciences Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry 0103 physical sciences FOS: Mathematics 010307 mathematical physics Geometry and Topology 0101 mathematics Algebraic number Algebraic Geometry (math.AG) Mathematics::Symplectic Geometry Mathematics |
Popis: | Adapting focal loci techniques used by Chiantini and Lopez, we provide lower bounds on the genera of curves contained in very general surfaces in Gorenstein toric threefolds. We illustrate the utility of these bounds by obtaining results on algebraic hyperbolicity of very general surfaces in toric threefolds. 24 pages, 5 figures; v2 minor revisions |
Databáze: | OpenAIRE |
Externí odkaz: |