Quantitative CT imaging for adipose tissue analysis in mouse model of obesity
Autor: | Jean-Pierre Tafani, Catherine Vidal, Sylvain Ordureau, Roger Lédée, Arnaud Marchadier, Christophe Léger |
---|---|
Přispěvatelé: | Léger, Christophe, Laboratoire Pluridisciplinaire de Recherche en Ingénierie des Systèmes, Mécanique et Energétique (PRISME), Université d'Orléans (UO)-Ecole Nationale Supérieure d'Ingénieurs de Bourges (ENSI Bourges), UsefulProgress, Pharmacologie, toxicologie et signalisation cellulaire (U747), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), APCIS S.A., APCIS, Laboratoire Pluridisciplinaire de Recherche en Ingénierie des Systèmes, Mécanique et Energétique ( PRISME ), Université d'Orléans ( UO ) -Ecole Nationale Supérieure d'Ingénieurs de Bourges ( ENSI Bourges ), Physiologie Cellulaire des Regulations Hormonales, Nutritionnelles et Pharmacologiques, Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) |
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: |
[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing
[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing Adipose tissue 030209 endocrinology & metabolism [ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing computer.software_genre Subcutaneous fat 030218 nuclear medicine & medical imaging 03 medical and health sciences 0302 clinical medicine [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing Voxel In vivo Region of interest Hounsfield scale small animal imaging Medicine gaussian mixture model [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing level set segmentation business.industry adipose tissue medicine.anatomical_structure medical CT expectation maximization Abdomen Ct imaging business [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing computer Biomedical engineering |
Zdroj: | Medical Imaging: Computer-Aided Diagnosis SPIE Medical Imaging 2011 SPIE Medical Imaging 2011, Feb 2011, Orlando, United States SPIE Medical Imaging 2011, Feb 2011, Orlando, United States. 2011 |
Popis: | International audience; In obese humans CT imaging is a validated method for follow up studies of adipose tissue distribution and quantification of visceral and subcutaneous fat. Equivalent methods in murine models of obesity are still lacking. Current small animal micro-CT involves long-term X-ray exposure precluding longitudinal studies. We have overcome this limitation by using a human medical CT which allows very fast 3D imaging (2 sec) and minimal radiation exposure. This work presents novel methods fitted to in vivo investigations of mice model of obesity, allowing (i) automated detection of adipose tissue in abdominal regions of interest, (ii) quantification of visceral and subcutaneous fat. For each mouse, 1000 slices (100μm thickness, 160 μm resolution) were acquired in 2 sec using a Toshiba medical CT (135 kV, 400mAs). A Gaussian mixture model of the Hounsfield curve of 2D slices was computed with the Expectation Maximization algorithm. Identification of each Gaussian part allowed the automatic classification of adipose tissue voxels. The abdominal region of interest (umbilical) was automatically detected as the slice showing the highest ratio of the Gaussian proportion between adipose and lean tissues. Segmentation of visceral and subcutaneous fat compartments was achieved with 2D ½ level set methods. Our results show that the application of human clinical CT to mice is a promising approach for the study of obesity, allowing valuable comparison between species using the same imaging materials and software analysis |
Databáze: | OpenAIRE |
Externí odkaz: |