Atmospheric boundary layer height disambiguation using synergistic remote sensing observations: case examples from VORTEX-SE
Autor: | Marcos Paulo Araujo Da Silva, Francesc Rocadenbosch, Stephen J. Frasier, Robin L. Tanamachi, Joan Villalonga, David D. Turner |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Doppler lidar
Teledetecció 010504 meteorology & atmospheric sciences Storms Planetary boundary layer 0211 other engineering and technologies 02 engineering and technology Optical radar Boundary layer (Meteorology) Adaptive filtering Atmospheric boundary layer 01 natural sciences law.invention Atmosphere Diurnal cycle law Capa límit (Meteorologia) Radar 021101 geological & geomatics engineering 0105 earth and related environmental sciences Remote sensing Profiling (computer programming) Ceilometer Kalman filter Radar òptic Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció [Àrees temàtiques de la UPC] 13. Climate action S-band radar Environmental science Tornado Estimation Tempestes |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | Synergistic remote sensing of the atmosphere, combined with adaptive techniques, offers unprecedented opportunities to characterise the evolution of key atmospheric features such as the Atmospheric Boundary Layer (ABL). Using long-duration, high-resolution, profiling observations from active and passive ground-based remote sensing systems during the Verification of the Origins of Rotation in Tornadoes Experiment{Southeast (VORTEX-SE) 2017 field campaign, an attempt is made to characterise ABL development over distinct regions that are well known for their relatively high tornado frequency. In this study, observing systems include an S-band radar, Vaisala CL-31 ceilometer, Doppler Wind lidar (DWL) and radiometric observations from the Collaborative Lower Atmosphere Mobile Profiling System (CLAMPS). In this work, ABL height (ABLH) tracking over the diurnal cycle, and - up to a point - its disambiguation over selected non-precipitating case examples, are attempted. Different observational sets are used, namely, radar reflectivity observations assimilated into a Kalman filter, DWL profiles of the vertical velocity, and virtual potential temperature profiles, as well as radiosoundings and cloudbase reference information collected during Intensive Observation Periods (IOP) carried out in VORTEX-SE, Alabama during 2017. Limitations and advantages of each system are discussed. This work was supported by NOAA grants NA1501R4590232 and NA16OAR4590209, and by the Purdue University Dept. of Earth, Atmospheric, and Planetary Sciences (EAPS). CommSensLab-UPC (Excellence UnitMDM-2016-0600 funded by the Agencia Estatal de Investigación, Spain) collaborated via Spanish Gov.– EURegional Development Funds, ARS project PGC2018-094132-B-I00 and ACTRIS-PPP project GA-739530. The Spanish National Science Foundation (Ministerio de Ciencia, Innovación y Universidades) funded doctoral grant PRE2018-086054 hold by M.P. Araujo da Silva. |
Databáze: | OpenAIRE |
Externí odkaz: |